|
Athanassopoulos, A. D., & Curram, S. P. (1996). A comparison of data envelopment analysis and artificial neural networks as tools for assessing the efficiency of decision making units. Journal of the Operational Research Society, 47(8), 1000–1016.
Abstract: This paper is concerned with the comparison of two popular non-parametric methodologiesdata envelopment analysis and artificial neural networksas tools for assessing performance. Data envelopment analysis has been established since 1978 as a superior alternative to traditional parametric methodologies, such as regression analysis, for assessing performance. Neural networks have recently been proposed as a method for assessing performance. In this paper, we use a simulated production technology of two inputs and one output for testing the success of the two methods for assessing efficiency. The two methods are also compared on their practical use as performance measurement tools on a set of bank branches, having multiple input and output criteria. The results demonstrate that, despite their differences, both methods offer a useful range of information regarding the assessment of performance.
|
|
|
Azadeh, A., Saberi, M., & Anvari, M. (2010). An integrated artificial neural network algorithm for performance assessment and optimization of decision making units. Expert Systems with Applications, 37(8), 5688–5697.
Abstract: This study proposes a non-parametric efficiency frontier analysis method based on artificial neural network (ANN) for measuring efficiency as a complementary tool for the common techniques of the efficiency studies in the previous studies. The proposed ANN algorithm is able to find a stochastic frontier based on a set of input-output observational data and do not require explicit assumptions about the functional structure of the stochastic frontier. Furthermore, it uses a similar approach to econometric methods for calculating the efficiency scores. Moreover, the effect of the return to scale of decision making unit (DMU) on its efficiency is included and the unit used for the correction is selected based on its scale (under constant return to scale assumption). However, the proposed algorithm is capable of handling outliers and noise. This is shown by two examples related to outlier situations. It is also capable of performing optimization analysis and forecasting for a given set of data. The proposed approach is applied to a set of actual conventional power plants to show its applicability and superiority.
|
|
|
Azadeh, A., Saberi, M., Anvari, M., & Izadbakhsh, H. R. (2009). A Meta heuristic approach for performance assessment of production units. Expert Systems with Applications, 36(3, Part 2), 6559–6569.
Abstract: There have been many efficiency frontier analysis methods reported in the literature. However, each of these methodologies has its strength as well as major limitations. This study proposes a Meta heuristic approach based on adaptive neural network (ANN) technique, fuzzy C-means and numerical taxonomy (NT) for measuring efficiency as a complementary tool for the common techniques of the efficiency studies in the previous studies. Homogenous test is done by NT. It is used to determine if the DMUs are homogenous or not. The proposed computational methods are able to find a stochastic frontier based on a set of input-output observational data and do not require explicit assumptions about the functional structure of the stochastic frontier. In this algorithm, for calculating the efficiency scores, a similar approach to za has been used. Moreover, the effect of the return to scale of decision making unit (DMU) on its efficiency is included and the unit used for the correction is selected by notice of its scale (under constant return to scale assumption). Also in non homogenous situation, for increasing DMUs’ homogeneousness, fuzzy C-means method is used to cluster DMUs. Two examples using real data are presented for illustrative purposes. Homogenous test result is positive in the first example, which deals with power generation sectors, and is negative in the second example dealing auto industries of various developed countries. Overall, we find that the proposed integrated algorithm based on ANN, fuzzy C-means and numerical taxonomy provides more robust results and identifies more efficient units than the conventional methods since better performance patterns are explored.
|
|
|
Çelebi, D., & Bayraktar, D. (2008). An integrated neural network and data envelopment analysis for supplier evaluation under incomplete information. Expert Systems with Applications, 35(4), 1698–1710.
Abstract: Supplier evaluation and selection are critical decision making processes that require consideration of a variety of attributes. Several studies have been performed for effective evaluation and selection of suppliers by utilizing several techniques such as linear weighting methods, mathematical programming models, statistical methods and AI based techniques. One of the successful evaluation methods proposed for this purpose is data envelopment analysis (DEA), that utilizes techniques of mathematical programming to evaluate the performance of a set of homogeneous decision making units, when multiple inputs and outputs need to be considered. It is often complicated, costly and sometimes impossible to acquire all necessary information from all potential suppliers to attain a reasonable set of similar input and output values which is an essential for DEA. The purpose of this study is to explore a novel integration of neural networks (NN) and data envelopment analysis for evaluation of suppliers under incomplete information of evaluation criteria.
|
|
|
Chang, H. - H., & Chen, Y. - K. (2011). Neuro-genetic approach to optimize parameter design of dynamic multiresponse experiments. Applied Soft Computing, 11(1), 436–442.
Abstract: Engineers have widely applied the Taguchi method, a traditional approach for robust experimental design, to a variety of quality engineering problems for enhancing system robustness. However, the Taguchi method is unable to deal with dynamic multiresponse owing to increasing complexity of the product or design process. Although several alternative approaches have been presented to resolve this problem, they cannot effectively treat situations in which the control factors have continuous values. This study incorporates desirability functions into a hybrid neural network/genetic algorithm approach to optimize the parameter design of dynamic multiresponse with continuous values of parameters. The objective is to find the optimal combination of control factors to simultaneously maximize robustness of each response. The proposed approach is based on three stages which (1) use neural networks for constructing a response function model of a dynamic multiresponse system, (2) use exponential desirability functions for evaluating overall performance of a specific factor combination, and (3) use a genetic algorithm to optimize parameter design. Effectiveness of the proposed approach is illustrated with a simulated example. Analysis results reveal that the approach has higher performance than the traditional experimental design.
|
|
|
Chang, P. - C., Lai, C. - Y., & Lai, K. R. (2006). A Hybrid System by Evolving Case-based Reasoning with Genetic Algorithm in Wholesaler’s Returning Book Forecasting. Decision Support Systems, 42(3), 1715–1729.
Abstract: A hybrid system by evolving a Case-Based Reasoning (CBR) system with a Genetic Algorithm (GA) is developed for wholesaler’s returning book forecasting. For a new book, key factors, such as the grade of the author, the grade of publisher, hot or slow season of publication date, sale volumes for the first 3 months and the returning rate, have been identified and applied as the key features to calculate the similarity coefficient of a new release book and to retrieve similar book from the reference cases to justify if the new book is a slow-selling or selling book. The case base of this research is acquired from a book wholesaler in Taiwan, and it is applied by the hybrid system to forecast returning books. The results of the prediction of the hybrid system were compared with the results of a back propagation neural network (BPNN), a conventional CBR, and a multiple-regression analysis method. The experimental results show that the GA/CBR is more accurate and efficient when being applied to the forecast of the returning books than other methods.
|
|
|
Chauhan, N., Ravi, V., & Karthik Chandra, D. (2009). Differential evolution trained wavelet neural networks: Application to bankruptcy prediction in banks. Expert Systems with Applications, 36(4), 7659–7665.
Abstract: In this study, differential evolution algorithm (DE) is proposed to train a wavelet neural network (WNN). The resulting network is named as differential evolution trained wavelet neural network (DEWNN). The efficacy of DEWNN is tested on bankruptcy prediction datasets viz. US banks, Turkish banks and Spanish banks. Further, its efficacy is also tested on benchmark datasets such as Iris, Wine and Wisconsin Breast Cancer. Moreover, Garson’s algorithm for feature selection in multi layer perceptron is adapted in the case of DEWNN. The performance of DEWNN is compared with that of threshold accepting trained wavelet neural network (TAWNN) [Vinay Kumar, K., Ravi, V., Mahil Carr, & Raj Kiran, N. (2008). Software cost estimation using wavelet neural networks. Journal of Systems and Software] and the original wavelet neural network (WNN) in the case of all data sets without feature selection and also in the case of four data sets where feature selection was performed. The whole experimentation is conducted using 10-fold cross validation method. Results show that soft computing hybrids viz., DEWNN and TAWNN outperformed the original WNN in terms of accuracy and sensitivity across all problems. Furthermore, DEWNN outscored TAWNN in terms of accuracy and sensitivity across all problems except Turkish banks dataset.
|
|
|
Costa, Á., & Markellos, R. N. (1997). Evaluating public transport efficiency with neural network models. Transportation Research Part C, 5(5), 301–312.
Abstract: This paper is concerned with measuring performance of public transport services based on the concept of productive efficiency. A new nonparametric approach is proposed based on multi-layer perceptron neural networks (MLPs). The advantages and limitations of this approach are discussed and compared with those of mathematical programming and econometric techniques. The MLP is used, along with data envelopment analysis (DEA) and corrected least squares (COLS), to set out comparative annual efficiency measures for the London Underground, for the period 1970 to 1994. It is argued that the MLP approach is superior to traditionally applied techniques since it is both nonparametric and stochastic and offers greater flexibility. Finally, it is demonstrated that the proposed MLP efficiency analysis has important practical implications for decision making.
|
|
|
Emrouznejad, A., & Shale, E. (2009). A combined neural network and DEA for measuring efficiency of large scale datasets. Computers & Industrial Engineering, 56(1), 249–254.
Abstract: Data Envelopment Analysis (DEA) is one of the most widely used methods in the measurement of the efficiency and productivity of Decision Making Units (DMUs). DEA for a large dataset with many inputs/outputs would require huge computer resources in terms of memory and CPU time. This paper proposes a neural network back-propagation Data Envelopment Analysis to address this problem for the very large scale datasets now emerging in practice. Neural network requirements for computer memory and CPU time are far less than that needed by conventional DEA methods and can therefore be a useful tool in measuring the efficiency of large datasets. Finally, the back-propagation DEA algorithm is applied to five large datasets and compared with the results obtained by conventional DEA.
|
|
|
Gutiérrez, E., & Lozano, S. (2010). Data Envelopment Analysis of multiple response experiments. Applied Mathematical Modelling, 34(5), 1139–1148.
Abstract: Taguchi method is the usual strategy in robust design and involves conducting experiments using orthogonal arrays and estimating the combination of factor levels that optimizes a given performance measure, typically a signal-to-noise ratio. The problem is more complex in the case of multiple responses since the combinations of factor levels that optimize the different responses usually differ. In this paper, an Artificial Neural Network, trained with the experiments results, is used to estimate the responses for all factor level combinations. After that, Data Envelopment Analysis (DEA) is used first to select the efficient (i.e. non-dominated) factor level combinations and then for choosing among them the one which leads to a most robust quality loss penalization. Mean Square Deviations of the quality characteristics are used as DEA inputs. Among the advantages of the proposed approach over traditional Taguchi method are the non-parametric, non-linear way of estimating quality loss measures for unobserved factor combinations and the non-parametric character of the performance evaluation of all the factor combinations. The proposed approach is applied to a number of case studies from the literature and compared with existing approaches.
|
|